Dirac Cohomology, K-characters and Branching Laws

نویسندگان

  • JING-SONG HUANG
  • FUHAI ZHU
  • Dudley E. Littlewood
چکیده

Inspired by work of Enright andWillenbring [EW], we prove a generalized Littlewood’s restriction formula in terms of Dirac cohomology. Our approach is to use a character formula of irreducible unitary lowest weight modules instead of the Bernstein-Gelfand-Gelfand resolution, and the proof is much simpler. We also show that our branching formula is equivalent to the formula of Enright and Willenbring in terms of nilpotent Lie algebra cohomology. This follows from the close relationship between the Dirac cohomology and the corresponding nilpotent Lie algebra cohomology for unitary representations of semisimple Lie groups of Hermitian type, which was established in [HPR].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 5 The Dirac monopole and differential characters

We describe the Dirac monopole using the Cheeger-Simons differential characters. We comment on the rôle of the Dirac string and on the connection with Deligne cohomology.

متن کامل

Ramond-ramond Fields, Fractional Branes and Orbifold Differential K-theory

We study D-branes and Ramond-Ramond fields on global orbifolds of Type II string theory with vanishing H-flux using methods of equivariant K-theory and K-homology. We illustrate how Bredon equivariant cohomology naturally realizes stringy orbifold cohomology. We emphasize its role as the correct cohomological tool which captures known features of the low-energy effective field theory, and which...

متن کامل

Multiplets of representations, twisted Dirac operators and Vogan’s conjecture in affine setting

We extend classical results of Kostant and al. on multiplets of representations of finite-dimensional Lie algebras and on the cubic Dirac operator to the setting of affine Lie algebras and twisted affine cubic Dirac operator. We prove in this setting an analogue of Vogan’s conjecture on infinitesimal characters of Harish–Chandra modules in terms of Dirac cohomology. For our calculations we use ...

متن کامل

Dirac Operators and Lie Algebra Cohomology

Dirac cohomology is a new tool to study unitary and admissible representations of semisimple Lie groups. It was introduced by Vogan and further studied by Kostant and ourselves [V2], [HP1], [K4]. The aim of this paper is to study the Dirac cohomology for the Kostant cubic Dirac operator and its relation to Lie algebra cohomology. We show that the Dirac cohomology coincides with the correspondin...

متن کامل

New Branching Rules Induced by Plethysm * B. Fauser

We derive group branching laws for formal characters of subgroups Hπ of GL(n) leaving invariant an arbitrary tensor T π of Young symmetry type π where π is an integer partition. The branchings GL(n) ↓ GL(n − 1) , GL(n) ↓ O(n) and GL(2n) ↓ Sp(2n) fixing a vector vi , a symmetric tensor gij = gji and an antisymmetric tensor fij = −fji , respectively, are obtained as special cases. All new branchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012